

SURDS

QUESTION 1

Simplify each of the following surds without using a calculator.

(a)
$$\sqrt{40}$$

(b)
$$\sqrt{18}$$

(c)
$$\sqrt{396}$$

QUESTION 2

Simplify each of the following surds without using a calculator.

(a)
$$\sqrt{75} + \sqrt{108}$$

(b)
$$\sqrt{32} + \sqrt{50}$$

(c)
$$(3+5\sqrt{2})(4-\sqrt{2})$$

QUESTION 3

Simplify each of the following surds without using a calculator.

(a)
$$\frac{2}{\sqrt{5}-3}$$

(b)
$$\frac{10}{\sqrt{2}-5}$$

(c)
$$\frac{8}{3\sqrt{7}-1}$$

QUESTION 4

It is given that a and b are positive integers such that $(a\sqrt{5}-1)(\sqrt{5}+b)=20\sqrt{5}+32$. Form a pair of simultaneous equations and solve them to find the value of a and of b.

QUESTION 5

Solve
$$\sqrt{7x-5} - x - 1 = 0$$
.

QUESTION 6

A rectangular block has a square base. The length of each side of the base is $(\sqrt{5} - \sqrt{3})$ m and the volume of the block is $(4\sqrt{3} - 2\sqrt{5})$ m³. Find, without the use of a calculator, the height of the block in the form of $a\sqrt{3} + b\sqrt{5}$.

QUESTION 7

A cylinder has a radius of $(\sqrt{2}-1)$ cm and a volume of $(12+4\sqrt{2})\pi$ cm³. Find, without using a calculator, the exact value of its height, h, in the form $\frac{a+b\sqrt{2}}{c}$ cm, where a, b and c are integers.