

LOGARITHMS

QUESTION 1

Convert each of the following to logarithmic form.

(a)
$$x^{2y} = 4$$

(b)
$$5^x = 12$$

(c)
$$(4x)^{5-p} = a$$

QUESTION 2

Solve each of the following equations.

(a)
$$\ln 4x = 5$$

(b)
$$\log_x 16 = 4$$

(c)
$$ln(3x) = 6$$

(d)
$$\log_k 81 = 2$$

QUESTION 3

Simplify $lg_6 2 + lg_6 3$ if possible.

QUESTION 4

Simplify $\log_5 25 - \log_5 5$ if possible.

QUESTION 5

Evaluate each of the following without using the calculator.

(a)
$$\log_8 64$$

WHERE PASSION **(b)**
$$1 = \log_2 \sqrt{4} + \log_2 \sqrt{3} - \log_2 \sqrt{6}$$

QUESTION 6

- (a) Given that $p = \log_a 9$, find $\log_3 a$ in terms of p.
- **(b)** If $p = \lg 14$, $\log_{14} 1 \frac{2}{5}$ in terms of p.

QUESTION 7

Solve the simultaneous equations.

WHERE PAS
$$\log_4 x - \log_2 y = 2$$
 HING INSPIRES

$$3^x = 81 \left(9^{\frac{3}{2} - 3y}\right)$$

QUESTION 8

The mass, m grams, of a radioactive substance, present at time t days after first being observed, is given by the formula $m = 28e^{-0.00072t}$.

- (a) Find the value of m when t = 20.
- (b) Find the value of t when the mass is half of its value at t = 0.
- (c) State the value which m approaches as t becomes very large.
- (d) Sketch the graph of m against t.

WHERE PASSIONATE TEACHING INSPIRES

WHERE PASSIONATE TEACHING INSPIRES

TIMGANMATH

WHERE PASSIONATE TEACHING INSPIRES
WWW.timganmath.com