

BINOMIAL THEOREM

QUESTION 1

Find, in ascending powers of x, the first four terms in the expansion of $(2-3x)^6$.

QUESTION 2

Find, in ascending powers of x, the first four terms in the expansion of $\left(2x + \frac{y}{4}\right)^6$.

QUESTION 3

Evaluate the following without using a calculator

(a)
$$\binom{10}{3}$$

(b)
$$\binom{n+2}{2}$$
 in terms of n

(c)
$$\binom{n+1}{n}$$
 in terms of n

(d)
$$\binom{n}{n}$$
 in terms of n

QUESTION 4

Find, in ascending powers of x, the first three terms in the expansion of $\left(2-\frac{x}{2}\right)^6$. Hence, find the coefficient of x^2 in the expansion of $\left(x+1\right)^2\left(2-\frac{x}{2}\right)^6$. SIGNALE TEACHING INSPIRES

QUESTION 5

In the expansion of $(1-2x)^n$, where n is a positive integer, in the ascending powers of x, the coefficient of the third term is 112. Find the value of n.

QUESTION 6

Find the term independent of x in the expansion of $\left(x^3 - \frac{1}{2x}\right)^{12}$.

QUESTION 7

Find the value of n in $(1+2x)^n$, given that the coefficients of x^2 and x^3 are in the ratio of 3:14.

QUESTION 8

Obtain the first 4 terms in the expansion, in ascending powers of x, of $(1-4x)^5$. Hence, find the value of $(0.96)^5$ correct to 3 decimal places.